skip to main content


Search for: All records

Creators/Authors contains: "Jin, Biao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 20, 2025
  2. Abstract Hierarchical nucleation pathways are ubiquitous in the synthesis of minerals and materials. In the case of zeolites and metal–organic frameworks, pre‐organized multi‐ion “secondary building units” (SBUs) have been proposed as fundamental building blocks. However, detailing the progress of multi‐step reaction mechanisms from monomeric species to stable crystals and defining the structures of the SBUs remains an unmet challenge. Combining in situ nuclear magnetic resonance, small‐angle X‐ray scattering, and atomic force microscopy, we show that crystallization of the framework silicate, cyclosilicate hydrate, occurs through an assembly of cubic octameric Q 3 8 polyanions formed through cross‐linking and polymerization of smaller silicate monomers and other oligomers. These Q 3 8 are stabilized by hydrogen bonds with surrounding H 2 O and tetramethylammonium ions (TMA + ). When Q 3 8 levels reach a threshold of ≈32 % of the total silicate species, nucleation occurs. Further growth proceeds through the incorporation of [(TMA) x (Q 3 8 )⋅ n  H 2 O] ( x −8) clathrate complexes into step edges on the crystals. 
    more » « less
    Free, publicly-accessible full text available July 10, 2024
  3. Hierarchical nucleation pathways are ubiquitous in the synthesis of minerals and materials. In the case of zeolites and metal–organic frameworks, pre-organized multi-ion “secondary building units” (SBUs) have been proposed as fundamental building blocks. However, detailing the progress of multi-step reaction mechanisms from monomeric species to stable crystals and defining the structures of the SBUs remains an unmet challenge. Combining in situ nuclear magnetic resonance, small-angle X-ray scattering, and atomic force microscopy, we show that crystallization of the framework silicate, cyclosilicate hydrate, occurs through an assembly of cubic octameric Q38 polyanions formed through cross-linking and polymerization of smaller silicate monomers and other oligomers. These Q38 are stabilized by hydrogen bonds with surrounding H2O and tetramethylammonium ions (TMA+). When Q38 levels reach a threshold of ≈32 % of the total silicate species, nucleation occurs. Further growth proceeds through the incorporation of [(TMA)x(Q38)⋅n H2O](x−8) clathrate complexes into step edges on the crystals. 
    more » « less
    Free, publicly-accessible full text available May 5, 2024
  4. null (Ed.)
    This article addresses recent advances in liquid phase transmission electron microscopy (LPTEM) for studying nanoscale synthetic processes of carbon-based materials that are independent of the electron beam—those driven by nonradiolytic chemical or thermal reactions. In particular, we focus on chemical/physical formations and the assembly of nanostructures composed of organic monomers/polymers, peptides/DNA, and biominerals. The synthesis of carbon-based nanomaterials generally only occurs at specific conditions, which cannot be mimicked by aqueous solution radiolysis. Carbon-based structures themselves are also acutely sensitive to the damaging effects of the irradiating beam, which make studying their synthesis using LPTEM a unique challenge that is possible when beam effects can be quantified and mitigated. With new direct sensing, high frame-rate cameras, and advances in liquid cell holder designs, combined with a growing understanding of irradiation effects and proper experimental controls, microscopists have been able to make strides in observing traditionally problematic carbon-based materials under conditions where synthesis can be controlled, and imaged free from beam effects, or with beam effects quantified and accounted for. These materials systems and LPTEM experimental techniques are discussed, focusing on nonradiolytic chemical and physical transformations relevant to materials synthesis. 
    more » « less
  5. Abstract

    Sequence‐defined foldamers that self‐assemble into well‐defined architectures are promising scaffolds to template inorganic mineralization. However, it has been challenging to achieve robust control of nucleation and growth without sequence redesign or extensive experimentation. Here, peptoid nanotubes functionalized with a panel of solid‐binding proteins are used to mineralize homogeneously distributed and monodisperse anatase nanocrystals from the water‐soluble TiBALDH precursor. Crystallite size is systematically tuned between 1.4 and 4.4 nm by changing protein coverage and the identity and valency of the genetically engineered solid‐binding segments. The approach is extended to the synthesis of gold nanoparticles and, using a protein encoding both material‐binding specificities, to the fabrication of titania/gold nanocomposites capable of photocatalysis under visible‐light illumination. Beyond uncovering critical roles for hierarchical organization and denticity on solid‐binding protein mineralization outcomes, the strategy described herein should prove valuable for the fabrication of hierarchical hybrid materials incorporating a broad range of inorganic components.

     
    more » « less